Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
iScience ; 26(4): 106457, 2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2276879

ABSTRACT

The elicitation of cross-variant neutralizing antibodies against SARS-CoV-2 represents a major goal for current COVID-19 vaccine strategies. Additionally, natural infection may also contribute to broaden neutralizing responses. To assess the contribution of vaccines and natural infection, we cross-sectionally analyzed plasma neutralization titers of six groups of individuals, organized according to the number of vaccines they received and their SARS-CoV-2 infection history. Two doses of vaccine had a limited capacity to generate cross-neutralizing antibodies against Omicron variants of concern (VOCs) in uninfected individuals, but efficiently synergized with previous natural immunization in convalescent individuals. In contrast, booster dose had a critical impact on broadening the cross-neutralizing response in uninfected individuals, to level similar to hybrid immunity, while still improving cross-neutralizing responses in convalescent individuals. Omicron breakthrough infection improved cross-neutralization of Omicron subvariants in non-previously infected vaccinated individuals. Therefore, ancestral Spike-based immunization, via infection or vaccination, contributes to broaden SARS-CoV-2 humoral immunity.

2.
Microbiol Spectr ; : e0415922, 2023 Mar 21.
Article in English | MEDLINE | ID: covidwho-2272926

ABSTRACT

Most individuals acutely infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit mild symptoms. However, 10 to 20% of those infected develop long-term symptoms, referred to as post-coronavirus disease 2019 (COVID-19) condition (PCC). One hypothesis is that PCC might be exacerbated by viral persistence in tissue sanctuaries. Therefore, the accurate detection and quantification of SARS-CoV-2 are not only necessary for viral load monitoring but also crucial for detecting long-term viral persistence and determining whether viral replication is occurring in tissue reservoirs. In this study, the sensitivity and robustness of reverse transcription (RT)-droplet digital PCR (ddPCR) and RT-quantitative PCR (qPCR) techniques have been compared for the detection and quantification of SARS-CoV-2 genomic and subgenomic RNAs from oropharyngeal swabs taken from confirmed SARS-CoV-2-positive, SARS-CoV-2-exposed, and nonexposed individuals as well as from samples from mice infected with SARS-CoV-2. Our data demonstrated that both techniques presented equivalent results in the mid- and high-viral-load ranges. Additionally, RT-ddPCR was more sensitive than RT-qPCR in the low-viral-load range, allowing the accurate detection of positive results in individuals exposed to the virus. Overall, these data suggest that RT-ddPCR might be an alternative to RT-qPCR for detecting low viral loads in samples and for assessing viral persistence in samples from individuals with PCC. IMPORTANCE We developed one-step reverse transcription (RT)-droplet digital PCR (ddPCR) protocols to detect SARS-CoV-2 RNA and compared them to the gold-standard RT-quantitative PCR (RT-qPCR) method. RT-ddPCR was more sensitive than RT-qPCR in the low-viral-load range, while both techniques were equivalent in the mid- and high-viral-load ranges. Overall, these results suggest that RT-ddPCR might be a viable alternative to RT-qPCR when it comes to detecting low viral loads in samples, which is a highly relevant issue for determining viral persistence in as-yet-unknown tissue reservoirs in individuals suffering from post-COVID conditions or long COVID.

3.
Mol Oncol ; 17(4): 686-694, 2023 04.
Article in English | MEDLINE | ID: covidwho-2258934

ABSTRACT

Patients with solid tumors have been a risk group since the beginning of the SARS-CoV-2 pandemic due to more significant complications, hospitalizations or deaths. The immunosuppressive state of cancer treatments or the tumor itself could influence the development of post-vaccination antibodies. This study prospectively analyzed 89 patients under chemotherapy and/or immunotherapy, who received two doses of the mRNA-1237 vaccine, and were compared with a group of 26 non-cancer individuals. Information on adverse events and neutralizing antibodies against the ancestral strain of SARS-CoV-2 (WH1) have been analyzed. Local reactions accounted for 65%, while systemic reactions accounted for 46% of oncologic individuals/cancer patients. Regarding the response to vaccination, 6.7% of cancer patients developed low neutralizing antibody levels. Lower levels of neutralizing antibodies between cancer and non-cancer groups were significant in individuals without previous SARS-CoV-2 infection, but not in previously infected individuals. We also observed that patients receiving chemotherapy or chemoimmunotherapy have significantly lower levels of neutralizing antibodies than non-cancer individuals. In conclusion, our study confirms the importance of prioritizing cancer patients receiving anticancer treatment in SARS-CoV-2 vaccination programs.


Subject(s)
COVID-19 , Neoplasms , Humans , SARS-CoV-2 , Antibodies, Neutralizing , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Immunotherapy , Neoplasms/drug therapy , RNA, Messenger
4.
J Infect Dis ; 226(11): 1913-1923, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2135326

ABSTRACT

BACKGROUND: We analyzed humoral and cellular immune responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines in people with human immunodeficiency virus (HIV; PWH) who had CD4+ T-cell counts <200/µL (HIV<200 group). METHODS: This prospective cohort study included 58 PWH in the HIV<200 group, 36 with CD4+ T-cell counts >500/µL (HIV>500 group), and 33 HIV-1-negative controls (control group). Antibodies against the SARS-CoV-2 spike protein (anti-S immunoglobulin [Ig] G) and the receptor-binding domain (anti-RBD IgG) were quantified before and 4 weeks after the first and the second doses of BNT162b2 or mRNA-1273 (at week 8). Viral neutralization activity and T-cell responses were also determined. RESULTS: At week 8, anti-S/anti-RBD IgG responses increased in all groups (P < .001). Median (interquartile range) anti-S and anti-RBD IgG levels at week 8 were 153.6 (26.4-654.9) and 171.9 (61.8-425.8) binding antibody units (BAU)/mL, respectively, in the HIV<200 group, compared with 245.6 (145-824) and 555.8 (166.4-1751) BAU/mL in the HIV>500 group and 274.7 (193.7-680.4) and 281.6 (181-831.8) BAU/mL in controls (P < .05). Neutralizing capacity and specific T-cell immune responses were absent or reduced in 33% of those in the HIV<200 group, compared with 3.7% in the HIV>500 group (P < .01). CONCLUSIONS: One-third of PWH with CD4+ T-cell counts <200/µL show low anti-S/anti-RBD IgG levels, reduced in vitro neutralization activity against SARS-CoV-2, and no vaccine-induced T cells after receiving coronavirus disease 2019 mRNA vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , HIV Seropositivity , Immune Reconstitution , Humans , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Immunoglobulin G , Prospective Studies , SARS-CoV-2 , Vaccination , Immunity, Humoral , Immunity, Cellular , T-Lymphocytes
5.
Pathogens ; 11(11)2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2115977

ABSTRACT

BACKGROUND: Prophylactic vaccination has proven to be the most effective strategy to fight the COVID-19 pandemic. METHODS: This was a prospective observational cohort study involving 30 predominantly antibody deficiency disorders (ADD)-afflicted adult patients on immunoglobulin replacement therapy vaccinated with three doses of the mRNA-1273 COVID-19 vaccine, and 10 healthy controls. Anti-RBD IgG antibodies were determined in plasma samples collected just before the first dose of mRNA-based COVID-19 vaccine and on weeks 4, 8, 24, and 28 following the first vaccination. Patients were categorized based on the levels of anti-RBD antibodies determined on w8 as non-, low-, and responders. Chi-square and Kruskal-Wallis tests were used to see if any variables correlated with humoral response levels. Any adverse effects of the mRNA-based vaccine were also noted. RESULTS: The COVID-19 vaccine was safe and well-tolerated. The humoral response elicited at w8 after vaccination depended on the type of ADD, the type of immunoglobulin deficiency, the presence of granulomatous lymphocytic interstitial lung disease, recent use of immunosuppressive drugs, and the switched memory B cells counts. The third vaccine dose boosted humoral response in previous responders to second dose but seldom in non-responders. CONCLUSIONS: The humoral response of patients with predominant ADD depends mostly on the type of immunodeficiency and on the frequency of B and T cell populations.

6.
iScience ; 25(11): 105455, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2086329

ABSTRACT

Mass vaccination campaigns reduced COVID-19 incidence and severity. Here, we evaluated the immune responses developed in SARS-CoV-2-uninfected patients with predominantly antibody-deficiencies (PAD) after three mRNA-1273 vaccine doses. PAD patients were classified based on their immunodeficiency: unclassified primary antibody-deficiency (unPAD, n = 9), common variable immunodeficiency (CVID, n = 12), combined immunodeficiency (CID, n = 1), and thymoma with immunodeficiency (TID, n = 1). unPAD patients and healthy controls (HCs, n = 10) developed similar vaccine-induced humoral responses after two doses. However, CVID patients showed reduced binding and neutralizing titers compared to HCs. Of interest, these PAD groups showed lower levels of Spike-specific IFN-γ-producing cells. CVID individuals also presented diminished CD8+T cells. CID and TID patients developed cellular but not humoral responses. Although the third vaccine dose boosted humoral responses in most PAD patients, it had limited effect on expanding cellular immunity. Vaccine-induced immune responses in PAD individuals are heterogeneous, and should be immunomonitored to define a personalized therapeutic strategies.

7.
Sci Rep ; 12(1): 14772, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-2016839

ABSTRACT

Limited data exists on SARS-CoV-2 sustained-response to vaccine in patients with rheumatic diseases. This study aims to evaluate neutralizing antibodies (nAB) induced by SARS-CoV-2 vaccine after 3 to 6 months from administration in Systemic Lupus Erythematosus (SLE) patients, as a surrogate of sustained-immunological response. This cross-sectional study compared nAB titre of 39 SLE patients and 37 Healthy individuals with no previous SARS-CoV-2 infection, who had all received a complete regimen of a mRNA SARS-CoV-2 vaccine within the last 3 to 6 months. We included four lines of SLE treatment including Not-treated, Hydroxychloroquine, immunosuppressive drugs and biological therapy. Glucocorticoids were allowed in all groups. Healthy and Not-treated individuals showed the highest levels of nAB. Treated patients presented lower nAB titres compared to Healthy: a 73% decrease for First-Line patients, 56% for Second-Line treatment and 72% for Third-Line. A multivariate analysis pointed to Glucocorticoids as the most associated factor with declining nAB levels (75% decrease) in treated SLE. Furthermore, a significant reduction in nAB titres was observed for Rituximab-users compared to Healthy subjects (89% decrease). Medium-term response of SLE patients to SARS-CoV-2 mRNA vaccines is negatively impacted in Glucocorticoids and Rituximab users. These findings might help to inform recommendations in vaccination protocols for SLE patients.


Subject(s)
COVID-19 , Lupus Erythematosus, Systemic , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Sectional Studies , Glucocorticoids/therapeutic use , Humans , Rituximab/therapeutic use , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
8.
Life Sci Alliance ; 5(12)2022 08 12.
Article in English | MEDLINE | ID: covidwho-1994892

ABSTRACT

SARS-CoV-2 vaccination is the most effective strategy to protect individuals with haematologic malignancies against severe COVID-19, while eliciting limited vaccine responses. We characterized the humoral responses following 3 mo after mRNA-based vaccines in individuals at different plasma-cell disease stages: monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma on first-line therapy (MM), compared with a healthy population. Plasma samples from uninfected MM patients showed lower SARS-CoV-2-specific antibody levels and neutralization capacity compared with MGUS, SMM, and healthy individuals. Importantly, COVID-19 recovered MM individuals presented significantly higher plasma neutralization capacity compared with their uninfected counterparts, highlighting that hybrid immunity elicit stronger immunity even in this immunocompromised population. No differences in the vaccine-induced humoral responses were observed between uninfected MGUS, SMM and healthy individuals. In conclusion, MGUS and SMM patients could be SARS-CoV-2 vaccinated following the vaccine recommendations for the general population, whereas a tailored monitoring of the vaccine-induced immune responses should be considered in uninfected MM patients.


Subject(s)
COVID-19 , Monoclonal Gammopathy of Undetermined Significance , Paraproteinemias , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Sectional Studies , Humans , Monoclonal Gammopathy of Undetermined Significance/pathology , Monoclonal Gammopathy of Undetermined Significance/therapy , SARS-CoV-2 , Vaccination
9.
Front Immunol ; 13: 815041, 2022.
Article in English | MEDLINE | ID: covidwho-1952315

ABSTRACT

The role of T cells in the control of SARS-CoV-2 infection has been underestimated in favor of neutralizing antibodies. However, cellular immunity is essential for long-term viral control and protection from disease severity. To understand T-cell immunity in the absence of antibody generation we focused on a group of SARS-CoV-2 Non-Seroconvertors (NSC) recovered from infection. We performed an immune comparative analysis of SARS-CoV-2 infected individuals stratified by the absence or presence of seroconversion and disease severity. We report high levels of total naïve and low effector CD8+ T cells in NSC. Moreover, reduced levels of T-cell activation monitored by PD-1 and activation-induced markers were observed in the context of functional SARS-CoV-2 T-cell responses. Longitudinal data indicate the stability of the NSC phenotype over three months of follow-up after infection. Together, these data characterized distinctive immunological traits in NSC including skewed cellular distribution, low activation and functional SARS-CoV-2 T-cell responses. This data highlights the value of T-cell immune monitoring in populations with low seroconversion rates in response to SARS-CoV-2 infection and vaccination.


Subject(s)
COVID-19 , T-Lymphocytes , Humans , Immunity, Cellular , SARS-CoV-2 , Vaccination
10.
Vaccines (Basel) ; 10(6)2022 May 26.
Article in English | MEDLINE | ID: covidwho-1939035

ABSTRACT

The diagnosis of the post-COVID condition is usually achieved by excluding other diseases; however, cognitive changes are often found in the post-COVID disorder. Therefore, monitoring and treating the recovery from the post-COVID condition is necessary to establish biomarkers to guide the diagnosis of symptoms, including cognitive impairment. Our study employs a prospected cohort and nested case-control design with mixed methods, including statistical analyses, interviews, and focus groups. Our main aim is to identify biomarkers (functional and structural neural changes, inflammatory and immune status, vascular and vestibular signs and symptoms) easily applied in primary care to detect cognitive changes in post-COVID cases. The results will open up a new line of research to inform diagnostic and therapeutic decisions with special considerations for cognitive impairment in the post-COVID condition.

11.
Sci Rep ; 12(1): 640, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1900548

ABSTRACT

COVID-19 pathophysiology is currently not fully understood, reliable prognostic factors remain elusive, and few specific therapeutic strategies have been proposed. In this scenario, availability of biomarkers is a priority. MS-based Proteomics techniques were used to profile the proteome of 81 plasma samples extracted in four consecutive days from 23 hospitalized COVID-19 associated pneumonia patients. Samples from 10 subjects that reached a critical condition during their hospital stay and 10 matched non-severe controls were drawn before the administration of any COVID-19 specific treatment and used to identify potential biomarkers of COVID-19 prognosis. Additionally, we compared the proteome of five patients before and after glucocorticoids and tocilizumab treatment, to assess the changes induced by the therapy on our selected candidates. Forty-two proteins were differentially expressed between patients' evolution groups at 10% FDR. Twelve proteins showed lower levels in critical patients (fold-changes 1.20-3.58), of which OAS3 and COG5 found their expression increased after COVID-19 specific therapy. Most of the 30 proteins over-expressed in critical patients (fold-changes 1.17-4.43) were linked to inflammation, coagulation, lipids metabolism, complement or immunoglobulins, and a third of them decreased their expression after treatment. We propose a set of candidate proteins for biomarkers of COVID-19 prognosis at the time of hospital admission. The study design employed is distinctive from previous works and aimed to optimize the chances of the candidates to be validated in confirmatory studies and, eventually, to play a useful role in the clinical practice.


Subject(s)
Blood Proteins , COVID-19/blood , COVID-19/diagnosis , Hospitalization , Aged , Aged, 80 and over , Biomarkers/blood , Disease Progression , Female , Humans , Male , Mass Spectrometry , Middle Aged , Prospective Studies , Proteome
12.
Age Ageing ; 51(5)2022 05 01.
Article in English | MEDLINE | ID: covidwho-1860799

ABSTRACT

BACKGROUND: SARS-CoV-2 vaccination is the most effective strategy to protect older residents of long-term care facilities (LTCF) against severe COVID-19, but primary vaccine responses are less effective in older adults. Here, we characterised the humoral responses of institutionalised seniors 3 months after they had received the mRNA/BNT162b2 vaccine. METHODS: plasma levels of SARS-CoV-2-specific total IgG, IgM and IgA antibodies were measured before and 3 months after vaccination in older residents of LTCF. Neutralisation capacity was assessed in a pseudovirus neutralisation assay against the original WH1 and later B.1.617.2/Delta variants. A group of younger adults was used as a reference group. RESULTS: three months after vaccination, uninfected older adults presented reduced SARS-CoV-2-specific IgG levels and a significantly lower neutralisation capacity against the WH1 and Delta variants compared with vaccinated uninfected younger individuals. In contrast, COVID-19-recovered older adults showed significantly higher SARS-CoV-2-specific IgG levels after vaccination than their younger counterparts, whereas showing similar neutralisation activity against the WH1 virus and an increased neutralisation capacity against the Delta variant. Although, similarly to younger individuals, previously infected older adults elicit potent cross-reactive immune responses, higher quantities of SARS-CoV-2-specific IgG antibodies are required to reach the same neutralisation levels. CONCLUSIONS: although hybrid immunity seems to be active in previously infected older adults 3 months after mRNA/BNT162b2 vaccination, humoral immune responses are diminished in COVID-19 uninfected but vaccinated older residents of LTCF. These results suggest that a vaccine booster dose should be prioritised for this particularly vulnerable population.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Long-Term Care , RNA, Messenger , Vaccination
13.
Cell Rep Med ; 3(2): 100523, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1751231

ABSTRACT

To understand the determinants of long-term immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the concurrent impact of vaccination and emerging variants, we follow a prospective cohort of 332 patients with coronavirus disease 2019 (COVID-19) over more than a year after symptom onset. We evaluate plasma-neutralizing activity using HIV-based pseudoviruses expressing the spike of different SARS-CoV-2 variants and analyze them longitudinally using mixed-effects models. Long-term neutralizing activity is stable beyond 1 year after infection in mild/asymptomatic and hospitalized participants. However, longitudinal models suggest that hospitalized individuals generate both short- and long-lived memory B cells, while the responses of non-hospitalized individuals are dominated by long-lived B cells. In both groups, vaccination boosts responses to natural infection. Long-term (>300 days from infection) responses in unvaccinated participants show a reduced efficacy against beta, but not alpha nor delta, variants. Multivariate analysis identifies the severity of primary infection as an independent determinant of higher magnitude and lower relative cross-neutralization activity of long-term neutralizing responses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Adult , Aged , B-Lymphocytes/immunology , COVID-19/blood , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/therapeutic use , Female , Follow-Up Studies , Humans , Immunologic Memory , Kinetics , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome , Vaccination/methods , Young Adult
14.
Biomed Opt Express ; 13(3): 1609-1619, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1741990

ABSTRACT

Current diagnostics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection heavily rely on reverse transcription-polymerase chain reaction (RT-PCR) or on rapid antigen detection tests. The former suffers from long time-to-result and high cost while the latter from poor sensitivity. Therefore, it is crucial to develop rapid, sensitive, robust, and inexpensive methods for SARS-CoV-2 testing. Herein, we report a novel optofluidic technology, a flow-virometry reader (FVR), for fast and reliable SARS-CoV-2 detection in saliva samples. A small microfluidic chip together with a laser-pumped optical head detects the presence of viruses tagged with fluorescent antibodies directly from saliva samples. The technology has been validated using clinical samples with high sensitivity (91.2%) and specificity (90%). Thanks also to its short time-to-result (<30 min) and small size (25 × 30 × 13 cm), which can be further reduced in the future, it is a strong alternative to existing tests, especially for point-of-care (POC) and low resource settings.

15.
Sci Rep ; 12(1): 298, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1612205

ABSTRACT

Inappropriate sinus tachycardia (IST) is a common observation in patients with post-COVID-19 syndrome (PCS) but has not yet been fully described to date. To investigate the prevalence and the mechanisms underlying IST in a prospective population of PCS patients. Consecutive patients admitted to the PCS Unit between June and December 2020 with a resting sinus rhythm rate ≥ 100 bpm were prospectively enrolled in this study and further examined by an orthostatic test, 2D echocardiography, 24-h ECG monitoring (heart rate variability was a surrogate for cardiac autonomic activity), quality-of-life and exercise capacity testing, and blood sampling. To assess cardiac autonomic function, a 2:1:1 comparative sub-analysis was conducted against both fully recovered patients with previous SARS-CoV-2 infection and individuals without prior SARS-CoV-2 infection. Among 200 PCS patients, 40 (20%) fulfilled the diagnostic criteria for IST (average age of 40.1 ± 10 years, 85% women, 83% mild COVID-19). No underlying structural heart disease, pro-inflammatory state, myocyte injury, or hypoxia were identified. IST was accompanied by a decrease in most heart rate variability parameters, especially those related to cardiovagal tone: pNN50 (cases 3.2 ± 3 vs. recovered 10.5 ± 8 vs. non-infected 17.3 ± 10; p < 0.001) and HF band (246 ± 179 vs. 463 ± 295 vs. 1048 ± 570, respectively; p < 0.001). IST is prevalent condition among PCS patients. Cardiac autonomic nervous system imbalance with decreased parasympathetic activity may explain this phenomenon.


Subject(s)
COVID-19/complications , Tachycardia, Sinus/etiology , Adult , COVID-19/diagnosis , COVID-19/pathology , COVID-19/physiopathology , Female , Heart Rate , Humans , Male , Middle Aged , Myocardium/pathology , Prevalence , Prospective Studies , SARS-CoV-2/isolation & purification , Tachycardia, Sinus/diagnosis , Tachycardia, Sinus/pathology , Tachycardia, Sinus/physiopathology , Post-Acute COVID-19 Syndrome
16.
Viruses ; 13(9)2021 08 28.
Article in English | MEDLINE | ID: covidwho-1374539

ABSTRACT

Angiotensin converting enzyme 2 (ACE2) is a host ectopeptidase and the receptor for the SARS-CoV-2 virus, albeit virus-ACE2 interaction goes far beyond viral entry into target cells. Controversial data exists linking viral infection to changes in ACE2 expression and function, which might influence the subsequent induction of an inflammatory response. Here, we tested the significance of soluble ACE2 enzymatic activity longitudinally in nasopharyngeal swabs and plasma samples of SARS-CoV-2 infected patients, along with the induction of inflammatory cytokines. Release of soluble functional ACE2 increases upon SARS-CoV-2 infection in swabs and plasma of infected patients, albeit rapidly decreasing during infection course in parallel with ACE2 gene expression. Similarly, SARS-CoV-2 infection also induced the expression of inflammatory cytokines. These changes positively correlated with the viral load. Overall, our results demonstrate the existence of mechanisms by which SARS-CoV-2 modulates ACE2 expression and function, intracellular viral sensing and subsequent inflammatory response, offering new insights into ACE2 dynamics in the human upper respiratory tract and pointing towards soluble ACE2 levels as a putative early biomarker of infection severity.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/genetics , Biomarkers , COVID-19/diagnosis , COVID-19/immunology , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Gene Expression , Host-Pathogen Interactions/immunology , Humans , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , SARS-CoV-2/isolation & purification , Viral Load
17.
Open Forum Infect Dis ; 8(7): ofab329, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1337280

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfections have been reported; however, most cases are milder than the primary infection. We report the first case of a life-threatening critical presentation of a SARS-CoV-2 reinfection. METHODS: A 62-year-old man from Palamós (Spain) suffered a first mild coronavirus disease 2019 (COVID-19) episode in March 2020, confirmed by 2 independent SARS-CoV-2 nasopharyngeal polymerase chain reaction (PCR) assays and a normal radiograph. He recovered completely and tested negative on 2 consecutive PCRs. In August 2020, the patient developed a second SARS-CoV-2 infection with life-threatening bilateral pneumonia and Acute respiratory distress syndrome criteria, requiring COVID-19-specific treatment (remdesivir + dexamethasone) plus high-flow oxygen therapy. Nasopharyngeal swabs from the second episode were obtained for virus quantification by real-time PCR, for virus outgrowth and sequencing. In addition, plasma and peripheral blood mononuclear cells during the hospitalization period were used to determine SARS-CoV-2-specific humoral and T-cell responses. RESULTS: Genomic analysis of SARS-CoV-2 showed that the virus had probably originated shortly before symptom onset. When the reinfection occurred, the subject showed a weak immune response, with marginal humoral and specific T-cell responses against SARS-CoV-2. All antibody isotypes tested as well as SARS-CoV-2 neutralizing antibodies increased sharply after day 8 postsymptoms. A slight increase of T-cell responses was observed at day 19 after symptom onset. CONCLUSIONS: The reinfection was firmly documented and occurred in the absence of robust preexisting humoral and cellular immunity. SARS-CoV-2 immunity in some subjects is unprotective and/or short-lived; therefore, SARS-CoV-2 vaccine schedules inducing long-term immunity will be required to bring the pandemic under control.

18.
Viruses ; 13(6)2021 06 12.
Article in English | MEDLINE | ID: covidwho-1270125

ABSTRACT

With the spread of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is a need to assess the protection conferred by both previous infections and current vaccination. Here we tested the neutralizing activity of infected and/or vaccinated individuals against pseudoviruses expressing the spike of the original SARS-CoV-2 isolate Wuhan-Hu-1 (WH1), the D614G mutant and the B.1.1.7 variant. Our data show that parameters of natural infection (time from infection and nature of the infecting variant) determined cross-neutralization. Uninfected vaccinees showed a small reduction in neutralization against the B.1.1.7 variant compared to both the WH1 strain and the D614G mutant. Interestingly, upon vaccination, previously infected individuals developed more robust neutralizing responses against B.1.1.7, suggesting that vaccines can boost the neutralization breadth conferred by natural infection.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Vaccines/immunology , COVID-19/immunology , Neutralization Tests/statistics & numerical data , SARS-CoV-2/immunology , Vaccination/statistics & numerical data , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19/blood , COVID-19 Serological Testing/statistics & numerical data , COVID-19 Vaccines/administration & dosage , Cross Reactions/immunology , Female , Humans , Immunity, Humoral , Male , Middle Aged , Prospective Studies , SARS-CoV-2/genetics
19.
Med (N Y) ; 2(3): 313-320.e4, 2021 03 12.
Article in English | MEDLINE | ID: covidwho-1135490

ABSTRACT

BACKGROUND: Understanding mid-term kinetics of immunity to SARS-CoV-2 is the cornerstone for public health control of the pandemic and vaccine development. However, current evidence is rather based on limited measurements, losing sight of the temporal pattern of these changes. METHODS: We conducted a longitudinal analysis on a prospective cohort of COVID-19 patients followed up for >6 months. Neutralizing activity was evaluated using HIV reporter pseudoviruses expressing SARS-CoV-2 S protein. IgG antibody titer was evaluated by ELISA against the S2 subunit, the receptor binding domain (RBD), and the nucleoprotein (NP). Statistical analyses were carried out using mixed-effects models. FINDINGS: We found that individuals with mild or asymptomatic infection experienced an insignificant decay in neutralizing activity, which persisted 6 months after symptom onset or diagnosis. Hospitalized individuals showed higher neutralizing titers, which decreased following a 2-phase pattern, with an initial rapid decline that significantly slowed after day 80. Despite this initial decay, neutralizing activity at 6 months remained higher among hospitalized individuals compared to mild symptomatic. The slow decline in neutralizing activity at mid-term contrasted with the steep slope of anti-RBD, S2, or NP antibody titers, all of them showing a constant decline over the follow-up period. CONCLUSIONS: Our results reinforce the hypothesis that the quality of the neutralizing immune response against SARS-CoV-2 evolves over the post-convalescent stage.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , Humans , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
20.
Sci Rep ; 11(1): 2608, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1054053

ABSTRACT

The protective effect of neutralizing antibodies in SARS-CoV-2 infected individuals is not yet well defined. To address this issue, we have analyzed the kinetics of neutralizing antibody responses and their association with disease severity. Between March and May 2020, the prospective KING study enrolled 72 COVID-19+ participants grouped according to disease severity. SARS-CoV-2 infection was diagnosed by serological and virological tests. Plasma neutralizing responses were assessed against replicative virus and pseudoviral particles. Multiple regression and non-parametric tests were used to analyze dependence of parameters. The magnitude of neutralizing titers significantly increased with disease severity. Hospitalized individuals developed higher titers compared to mild-symptomatic and asymptomatic individuals, which together showed titers below the detection limit in 50% of cases. Longitudinal analysis confirmed the strong differences in neutralizing titers between non-hospitalized and hospitalized participants and showed rapid kinetics of appearance of neutralizing antibodies (50% and 80% of maximal activity reached after 11 and 17 days after symptoms onset, respectively) in hospitalized patients. No significant impact of age, gender or treatment on the neutralizing titers was observed in this limited cohort. These data identify a clear association of humoral immunity with disease severity and point to immune mechanisms other than antibodies as relevant players in COVID-19 protection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adaptive Immunity/immunology , Adult , Antibodies, Neutralizing/blood , COVID-19/blood , Cohort Studies , Female , Humans , Immunity, Humoral/immunology , Immunoglobulin G/blood , Male , Middle Aged , Prospective Studies , Severity of Illness Index , Spain/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL